コード
analytic
# Copyright Disney Enterprises, Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License
# and the following modification to it: Section 6 Trademarks.
# deleted and replaced with:
#
# 6. Trademarks. This License does not grant permission to use the
# trade names, trademarks, service marks, or product names of the
# Licensor and its affiliates, except as required for reproducing
# the content of the NOTICE file.
#
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# variables go here...
# [type] [name] [min val] [max val] [default val]
::begin parameters
color baseColor .82 .67 .16
float metallic 0 1 0
float subsurface 0 1 0
float specular 0 1 .5
float roughness 0 1 .5
float specularTint 0 1 0
float anisotropic 0 1 0
float sheen 0 1 0
float sheenTint 0 1 .5
float clearcoat 0 1 0
float clearcoatGloss 0 1 1
::end parameters
::begin shader
const float PI = 3.14159265358979323846;
float sqr(float x) { return x*x; }
float SchlickFresnel(float u)
{
float m = clamp(1-u, 0, 1);
float m2 = m*m;
return m2*m2*m; // pow(m,5)
}
float GTR1(float NdotH, float a)
{
if (a >= 1) return 1/PI;
float a2 = a*a;
float t = 1 + (a2-1)*NdotH*NdotH;
return (a2-1) / (PI*log(a2)*t);
}
float GTR2(float NdotH, float a)
{
float a2 = a*a;
float t = 1 + (a2-1)*NdotH*NdotH;
return a2 / (PI * t*t);
}
float GTR2_aniso(float NdotH, float HdotX, float HdotY, float ax, float ay)
{
return 1 / ( PI * ax*ay * sqr( sqr(HdotX/ax) + sqr(HdotY/ay) + NdotH*NdotH ));
}
float smithG_GGX(float Ndotv, float alphaG)
{
float a = alphaG*alphaG;
float b = Ndotv*Ndotv;
return 1/(Ndotv + sqrt(a + b - a*b));
}
vec3 mon2lin(vec3 x)
{
return vec3(pow(x[0], 2.2), pow(x[1], 2.2), pow(x[2], 2.2));
}
vec3 BRDF( vec3 L, vec3 V, vec3 N, vec3 X, vec3 Y )
{
float NdotL = dot(N,L);
float NdotV = dot(N,V);
if (NdotL < 0 || NdotV < 0) return vec3(0);
vec3 H = normalize(L+V);
float NdotH = dot(N,H);
float LdotH = dot(L,H);
vec3 Cdlin = mon2lin(baseColor);
float Cdlum = .3*Cdlin[0] + .6*Cdlin[1] + .1*Cdlin[2]; // luminance approx.
vec3 Ctint = Cdlum > 0 ? Cdlin/Cdlum : vec3(1); // normalize lum. to isolate hue+sat
vec3 Cspec0 = mix(specular*.08*mix(vec3(1), Ctint, specularTint), Cdlin, metallic);
vec3 Csheen = mix(vec3(1), Ctint, sheenTint);
// Diffuse fresnel - go from 1 at normal incidence to .5 at grazing
// and mix in diffuse retro-reflection based on roughness
float FL = SchlickFresnel(NdotL), FV = SchlickFresnel(NdotV);
float Fd90 = 0.5 + 2 * LdotH*LdotH * roughness;
float Fd = mix(1, Fd90, FL) * mix(1, Fd90, FV);
// Based on Hanrahan-Krueger brdf approximation of isotropic bssrdf
// 1.25 scale is used to (roughly) preserve albedo
// Fss90 used to "flatten" retroreflection based on roughness
float Fss90 = LdotH*LdotH*roughness;
float Fss = mix(1, Fss90, FL) * mix(1, Fss90, FV);
float ss = 1.25 * (Fss * (1 / (NdotL + NdotV) - .5) + .5);
// specular
float aspect = sqrt(1-anisotropic*.9);
float ax = max(.001, sqr(roughness)/aspect);
float ay = max(.001, sqr(roughness)*aspect);
float Ds = GTR2_aniso(NdotH, dot(H, X), dot(H, Y), ax, ay);
float FH = SchlickFresnel(LdotH);
vec3 Fs = mix(Cspec0, vec3(1), FH);
float roughg = sqr(roughness*.5+.5);
float Gs = smithG_GGX(NdotL, roughg) * smithG_GGX(NdotV, roughg);
// sheen
vec3 Fsheen = FH * sheen * Csheen;
// clearcoat (ior = 1.5 -> F0 = 0.04)
float Dr = GTR1(NdotH, mix(.1,.001,clearcoatGloss));
float Fr = mix(.04, 1, FH);
float Gr = smithG_GGX(NdotL, .25) * smithG_GGX(NdotV, .25);
return ((1/PI) * mix(Fd, ss, subsurface)*Cdlin + Fsheen)
* (1-metallic)
+ Gs*Fs*Ds + .25*clearcoat*Gr*Fr*Dr;
}
::end shader